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Small amplitude forced horizontal or vertical oscillations of a container of liquid 
with a free surface may give rise to motions in the liquid on a scale much greater 
than the forcing amplitude. Three such situations are analysed and, in those 
cases where the response is still small compared with the dimensions of the 
container, explicit asymptotic solutions for the liquid motion are obtained. 

1. Introduction 
This paper is concerned with three types of gravity waves which form on the 

surface of a liquid in a container which oscillates at near-resonant frequencies. 
By resonant oscillations we shall mean that the response to forced harmonic 
oscillations whose amplitude is small compared with the dimensions of the 
container is of a larger order of magnitude than the forcing amplitude. The most 
amenable class of such oscillations is that in which the response is still small 
compared with the dimensions of the container and the first two problems con- 
sidered fall into this category. Although the three problems are physically dis- 
tinct, as perturbation problems they are very similar. They all involve at  least 
two small parameters in such a way that a linear description becomes invalid 
as one of the parameters approaohes zero. In  each case there is a critical relation- 
ship between the orders of magnitude of the parameters which, when it holds, 
leads to a nonlinear asymptotic solution of the problem which remains valid as 
any of the parameters tends to zero. 

For simplicity we shall discuss oscillations of inviscid fluids initially and 
subsequently consider situations in which laminar viscous boundary layers on 
the container walls can have an important effeot. 

The first problem, which has been fairly thoroughly discussed in the literature 
(Moiseyev 1958; Chester 1968), concerns horizontal oscillations of a, two- 
dimensional finite tank of length nL and depth hL. Free oscillations have a dis- 
crete spectrum with frequencies o = [gn  tanh (nh)/L]+, where n is an integer, 
and resonance occurs when the tank is forced to oscillate near these frequencies. 
In  $ 2  we use the asymptotic methods described above to obtain a uniformly 
valid description of the response which includes the results of both Moiseyev and 
Chester and unifies their analyses in the case of weak dispersion when h is small. 

The second problem, which is not so well understood, deals with horizontally 
forced oscillations in a semi-infinite tank of breadth nb and depth hb. Here there 
is a continuous spectrum of free oscillations for any given transverse wavenumber 
m, with frequencies 

o = {g(m2 + a2)4 tanh [(m2 + a2)* h]/b}*, 
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where r is real. Resonance does not occur at  all these frequencies (Ursell 1952) 
but only at the cut-off frequency wo = [grn tanh (rnh)/bJ*. An interesting feature 
of this situation is that the linearized solution is not only singular as w -+ wo 
but the boundary condition at infinity needed to specify the solution uniquely 
changes from one of boundedness for w < wo to a radiation condition for w > wo. 
The equations whioh describe the transition region when I (w - wo)/wol is small 
have been derived by Mahony (1971) and $ 3  is mainly concerned with a dis- 
cussion of the possible solutions of these equations. 

The final problem concerns vertical oscillations of a cylindrical tank of arbi- 
trary cross-section. The response is no longer one of classical resonance, since 
a rigid-body motion of the fluid is a solution of the full, as well as the linearized, 
equations of motion for all forcing frequencies. However, near the discrete 
spectrum of natural frequencies of the tank, Benjamin & Ursell (1954) have 
shown that this solution is unstable and in 3 4 we present a theory which suggests 
that, for frequencies above the lowest natural frequency, motions are possible 
on a length scale comparable with that of the container, even for infinitesimal 
forcing amplitudes. 

Our aim in each problem is to discover the response curve for the amplitude 
of periodic solutions in terms of the fixed forcing frequency. For the third problem 
it is relatively easy to discuss the stability of the various branches of the re- 
sponse curve. Elsewhere we shall only touch upon the problems of stability and 
of the way in which the response curve is traced out when the forcing frequency is 
varied sufficiently slowly. 

2. Horizontal oscillations of a finite tank 
The inviscid two-dimensional motion of an incompressible fluid of mean depth 

hL in a tank of length ~ T L  subjected to a horizontal oscillation of amplitude EL 
and frequency w is described by a velocity potential sL2w$ and surface elevation 
eLy satisfying, with suitably chosen axes, 

v2q5 = 0, 

q5z = sint on x = -ccost,.rr-ecost (2.2) 

= ?It +E5brz,  (2.3) 

and, on y = €7, 

in dimensionless variables. Here Lw2 = (1 + 8)  g tanh h. This section will be con- 
cerned with solutions for # and r j  which are periodic with the same frequency as 
the forcing term, r j  having zero mean. The first resonant frequency according to 
linearized theory, when E = 0, occurs when 6 = 0 and we shall only consider the 
solution for small E and 6. The method we use for treating this situation may also 
be applied to higher resonant frequencies, but not uniformly for very high- 
frequency forcing. 

An asymptotic expansion of the solution for small 6 and S yields the following 
results. 
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FIGURE 1. Response curves for equation (2.6). -, H > 0; - - -, H < 0. 

(i) h 2 O( 1) .  As long as 6 B d, the expansions for 4 and 7 begin with terms of 
O(6-l) and are the limiting forms of the linearized solution as 6 + 0. The leading 
terms are the linearized eigensolutions 

A sinhhcosx cos (t  +a) (2.5a, b)  
A 4 N -cosxcosh(y+h)sin(t+a), 7 N -- 
8 6 

and examination of the terms of O(1) gives a = 0 or and & 4/zcoshh = A 
respectively. However, for 8 e q  < O(1) Moiseyev (1958) has shown that the 
appropriate expansions are $J N e-34, + e-44, + # z  + . . . , and similarly for 7. The 
motivation for this scheme on the assumption that 4, is still the linearized 
eigensolution ( 2 . 5 ~ )  is that, in order that the equation for & which must satisfy 
the boundary condition (2.2), should be soluble, it must contain a suitable odd 
harmonic in t and x generated by the nonlinear combination of the preceding 
terms. With the quadratic nonlinearity in (2.3) and (2.4), this is the simplest 
scheme which allows this to occur. After some manipulation we again find a! = 0 
or 7~ but now 

4n-1 tanh h = 6 d A  sinh h + H(h) A3 (2.6) 

respectively, where H = - & sech2 h cosech h[9 + 15 sinh2 h - 8 sinhs h] and is 
monotonic increasing with a zero at  h = h, == 1.06. The response (figure I) is 
thus exactly similar to that of an undamped Duffing equation with the change 
from ‘ hard-spring ’ to ‘soft-spring ’ as h increases through h,, and this phenomenon 
for free oscillations has been noted by Tadjbakhsh & Keller (1960). 

A further property in common with Duffing’s equation which may be easily 
verified is that of the instability of the branches AB or CD of the response curve. 
This may be done by considering a nearly periodic response in which A and a! 

in (2.5) are functions of a slow variable T = e3t and using a two-variable expansion 
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in t and 7. We also note that, when h = h,, the expansion again breaks down for 
sufficiently small 6. However, for )h- h,l < O(&), q5 and 7 may be expanded in 
powers of d, with leading terms of O(&), as long as 66-* 6 O(1). We shall not 
discuss the details here but the result is a quintic equation for A instead of (2.6) 
which gives a finite response for all finite S and h - h,. 

These phenomena have been observed experimentally by Taylor (1 953) and 
Fultz (1962). The experimental response curves naturally resemble those of 
a damped Duffing equation, but we shall not discuss in detail the various possible 
damping mechanisms for surface waves in finite containers here (see Miles 1967). 
However, we note that the effect of the linear oscillating boundary layers on the 
vertical walls of the tank is to replace (2.2) by 

Qz = sint -t (A/SRe+) cosh (y + h) cos (t + in) (2.7) 

on x = - c cos t ,  7~ - B cos t respectively. Here Re = wL2/v, where v is the kinematic 
viscosity. Thus, if Re@ N O( I )  there is a phase change in the boundary condition 
for Qz which results in a rounding off of the response curve for IA I. This is similar 
to the effect of introducing damping proportional to the velocity in Duffing’s 
equation. 

(ii) h < 1. This situation has been considered in some detail by Chester (1968) 
on the basis of the shallow-water-theory equations, with terms added to account 
for the effects of dispersion and viscous dissipation in the boundary layer at the 
base of the tank. For negligible dispersion and dissipation, the analogy with 
gasdynamics and the results for resonance in organ pipes (Chester 1964; Collins 
1971) suggest that, as S --f 0, the most physically sensible solution for 7 is dis- 
continuous, and Chester was able to consider the effects of dispersion on this 
solution. Indeed, the perturbation solution which we shall now describe, which 
connects the non-dispersive shallow-water limit with the limit as h -+ 0 of the 
solution discussed above, will be found to satisfy the differential equation which 
was suggested by Chester as a model for dispersive effects in resonant oscillations. 

The asymptotic expansion is now in terms of three small parameters e, 6 and h 
but we shall find that all the interesting cases can be discussed by considering 
the limit e--f  0 with K = h d  and h = Se-* both of O(1). We again construct a 
perturbation scheme in which the terms of O( 1) in the expansion for q5 are capable 
of satisfying (2.2) and we find that this necessitates 

Q - dq5, + E 4 Q l  + q5z + . . . , y - €-&yo + q1 + €iqz + . . . . 
Thus q5,, is a harmonic function whose normal derivatives vanish on x = 0, T and 
y = 0 and the equation for Q1 then shows that q50yy + QOtt = 0 on y = 0. Thus 

q 5 O I l l = O  =f-+f+, (2.8) 

q51y[y=o = -4fll. +f$). (2.9) 

where f* = f ( t  k x) and f has period 2i7. A similar argument applied to #1, which 
is also harmonic, then gives 

Equations (2.8) and (2.9) are all we need to determine $2tt-q52xx on y = 0 as 

+K$(f? +fY +f!. +f;) - 3df4.f: +flf!) +f;flr +fLf:: - h(fL +fr;). (2.10) 
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A particular integral for # 2 1 u = o  can now be written down and q52s can only satisfy 

2 sin t/n = ( A  - 4 ~ 2 )  f" - + ~ 2 f "  + 3f 'f" (2.2) if 

or, iff' = g, 

K2 - (9" +g) - hg- #g2 + - 2 cost = -- r n g 2 ( t ' )  at'. 
3 n 4n 0 

(2.11) 

Here the constant of integration is chosen so that g and hence vo have zero mean 
over a period 2n. 

We can now see in what sense this asymptotic solution covers all the interesting 
situations for small E ,  '6' and h. Away from resonance, as h --f 00, one asymptotic 
form for g is 2 cos tlhn, which is the limit of the linearized solution near resonance. 
For deeper water, as K -+ co, the effect of the nonlinearity is small and a perturba- 
tion solution for h N K-Q gives g N K*A cos (t  +a), where A satisfies the limit of 
(2.6) as h -+ 0. For shallower water, when K + 0, dispersion is small and one 
asymptotic form for g satisfies the algebraic equation (2.11) with K = 0. The solu- 
tion is described by Chester (1968) and compressive discontinuities occur for 
[ A1 < (96/n3)* 1.76. 

Various aspects of the asymptotic and numerical solution of (2.11) are dis- 
cussed in appendix A. We shall conclude this section with ;I brief account of the 
possible effect of viscosity in the boundary layer at  the base of the tank. Although, 
in our scaling, q5 N E-4 in the inviscid theory, the scale of motion is still small 
compared with the length of the tank. Thus the boundary layer is Iinear and the 
normal velocity at  its edge is of O(Re-is-4). In order for this correction to affect 
the equation for g we must have (€Re)-+ N d or Re N e-4, remembering that g is 
determined by (2.10), which is in turn derived from consideration of the term 
~ $ 9 ~  in the expansion for q5. Now the free-stream velocity for the linear boundary 
layer is €-it( f; - f L )  = P(x, t )  say. Thus the transverse velocity in the layer is 

(2.12) 

where y" = (y + h)  Re:. The resulting displacement effect means that the normal 
velocity of the outer flow tends to 

du 
p d  [f"(t - u + x) + f " ( t  - u - x)] - Som U4 

as IJ --f - h, where 5 = n-8e-4Re-8. This finally means that the right-hand side of 
(2.i I )  is replaced by 

g(t - u) 2 + constant. (2.13) 

This term means that g is no longer symmetrical about t = n, and its effect on 
the numerical solution is discussed in appendix A. 

3. Horizontal oscillations of a semi-infinite tank 
We shall first consider the inviscid fluid motion described by Ursell (1952) in 

which a flexible wall oscillating with frequency w in the plane x = 0 generates 
waves propagating in the positive x direction in a semi-infinite tank of breadth 

26 FL* 59 
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nb and depth hb, the mean surface level being y = 0. Using dimensionless variables 
similar to  those in 9 2 ,  the motion is described by 

vz6, = 0, (3.1) 

4, = U(y)coszsint on x = -eU(y) coszeost, (3-2) 

& = O  on y = - h ,  (3.3) 

Here eb U (  y) cos z describes the spatial variation of the wall. Again we shall seek 
solutions for 6, and 7 which are periodic in t with period 2n, 7 having zero mean. 
The appropriate boundary conditions as x + co will be discussed shortly. 

When 6 = 0, the linearized solution for 6, is proportional to e*it and can be 
expanded in a series of orthogonal eigenfunctions of the form 

exp[&i(ki-  I)~x]coshk,(y+h) and exp[ 5 (kA2+ l )*x]cosk; (y+h) ,  

where k tanh kh = b o 2 / g  has roots lc,, J. ik;. If w is less than the cut-off fre- 
quency w, = [g tanh h/b]h, so that k, is less than unity, the solution is determined 
uniquely by a boundedness condition as z -+ 00, and in fact it decays exponentially 
for large x. However, if w > w,, a non-decaying wave train propagates to infinity 
and a radiation condition must be applied to ensure uniqueness. Moreover, if 
w = o,, the boundary condition (3.2) cannot be expanded in terms of the eigen- 
functions, which are no longer complete at x = 0. The amplitude of the linearized 
solution is then of O( /S'1-4), where k,  = 1 + S', and this section will be concerned 
with the solution of (3.1)-(3.5) for sniall values of e and 8'. 

As long as k = S'/e > O( 1) , the asymptotic expansions for r$ and 7 may be found 
from linearized theory, and initially proceed in powers of /&'It with leading terms 
of O( IS'/-$). A feature which distinguishes the expansions from those in 9 2 is 
the appearance of two length scales, x of O(1) and O( I#]-&), in the various terms 
of the solution. Mahony (1971)  has shown that the appropriate expansions for 
k < O( 1 )  are 6, N ~ - 4 6 , ~  + + e46,z + . . . , and similarly for 7, where $, and 7, are 
functions not only of x, y, z and t but also of 5 = xd. As in $ 2 ,  r$, is again the 
linearized eigensolution 

(A,(()  cost +U,,([) sin t )  cos z cosh (y + h) (3.6) 

but, in contrast, can now satisfy (3.2) just as long as 

dA0 - = o ,  -- dBo - -4~-hU(y)cosh(y+h)dy/ (s inhh+2h)  = V ,  (3.7) a5 d5 0 

say, at 6 = 0. A,and B, are not now determined until the solvability of the equa- 
tion for q52 has been considered, because the introduction of the length scale [ 
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introduces a resonant driving term e4$055 in the expansion of Laplace’s equation. 
After some manipulation, we find that there is no bounded solution for q52 unless 

d2Ao/dE2 + 2kA0+ G(h) A,(Ai + BE) = 0, ( 3 . 8 a )  

d2Bo/dE2 + ZkB, + G(h) B,(AE + Rt) = 0, (3 .8b )  

where G(h)  = 2H(h)/coshh(tanhh+hsech2h). 
A solution of (3 .8 )  satisfying (3.7) is now sought, where we assume V =+ 0. In 

the linear problem, when (kl --f co, a unique solution exists satisfying the con- 
dition of boundedness as k -+ - co or the radiation condition 

A,cost+B,sint - constant x e x p [ i ( ( 2 k ) t ( - t ) ]  as k -++a. 
Each of these conditions can be thought of as the analytic continuation of the 
other in the complex-k plane. However, the enumeration of the solutions is more 
complicated in the nonlinear case, as may be seen by writing 

to give 
A, + iB, = r eio, r2 = X ,  r2d0/dc  = Y ,  r d r l d t  = Z 

d X / d [  = 2 2 ,  dY/dt  = 0,  XdZld6  = Y 2 + Z 2 - G X 3 - 2 k X 2 ,  ( 3 . 9 a , b , c )  

with Y 2  + Z 2  = P X a t  6 = 0. This formulation is used for subsequent convenience. 
Consideration of the singular points in the X, Z phase plane with X 0 and 
Y = Yo = constant enables us to list the circumstances under which X -+ constant 
as 6 -+ co, so that the radiation condition is satisfied. 

First consider Yo + 0 and put X = X ,  when 6 = 0. Then, if G > 0, X can only 
tend to a constant if X = X,, where X ,  is the positive root ofGX$ + 2kX, - V2 = 0. 
However, if G < 0 and k > 0, X can be identically equal t o  either root of this 
equation as long as k2 + GV2 > 0, but it can also tend to the larger positive zero 
of GX3 + 2kX2-  Yi as E + co. Second, if Y,  = 0, X may tend to zero as 6 --f co if 
k < 0 and G X t + 4 k X , + 2 V 2 =  0, while if k > 0 and G < 0, X may tend to 
- 2k/G as 6 --f co if GX; + 4kX, -+ 4kz/G + 2V2 = 0. Thus there are now many 
response curves for X,, which is essentially the wave amplitude a t  the wave 
maker, as a function of k, and in particular there is an infinite spectrum when 
G < 0 and Ic > 0 (figures 2a, b ) .  

This non-uniqueness may possibly be resolved by considering the stability 
of the various solutions, but instead we shall consider here the effect of suitably 
thin viscous boundary layers on the base and walls of the tank. Equation ( 3 . 6 )  
shows that the velocity in these layers is predominantly in the y, x plane. Their 
analysis, when the Reynolds number is just small enough to affect the equations 
for A,  and B,, has been given by Mahony (1971) and is similar to the boundary- 
layer analyses given in § 2 .  The result is that, for Re - c2, the right-hand sides 
of (3 .8  a) and (3 .8  b )  become - yR,  and y A  , respectively, where y is some measure 
of the viscosity, and also k is changed by O(y) .  We shall henceforth assume that 
y > 0; our results are trivially modified for y < 0. Equations (3 .9 )  are thus 
basically unaltered except that the right-hand side of ( 3 . 9 b )  is now y X ,  so that 
the only singular point in the X ,  Y ,  Z phase space is the origin. 

We shall now carry out our analysis of the viscous situation under the assump- 
tion of boundedness at infinity. A local linear analysis near X = Y = Z = 0 

26-2 
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FIGURE 2 .  Rcsponsc curve for equations (3.8a, b ) .  ( a )  G > 0: -, G X i +  2kX,- J772 = 0; 
- _ -  , GX,2+4kX,+ 2V2 = 0. ( b )  G < 0: X ,  rnay take any value in k > 0. 

shows that the only integral curve on which this assumption is satisfied is that 
which passes through the origin without being tangential to the Z axis there. The 
value of X at the intersection of this curve I' with the initial surface Y2 + Z2 = V 2 X  
then gives t8he amplitude at  the wave maker. We now briefly discuss this value 
as 1' + 0. 

(i)  k < 0, G < 0. For small y, I? is a regular perturbation about the curve 

Y = 0, Z 2  = -+GX3-2kXz,  Z < 0, (3.10) 

and so, as y -+ 0, the response is given by 

G X ~ + 4 k X o + 2 V z  = 0. (3.11) 

(ii) E > 0, G > 0. I' is now a regular perturbation about the curve 

z = 0, ~2 = 2 k x z + ~ x 3 ,  Y < 0, (3.12) 
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k 

FIGURE 3. Response curve as y + 0 for G < 0. 

so that the response is given by 
(3.13) 

Both (3.11) and (3.13) were suggested by the inviscid theory. 
(iii) k > 0, G < 0. r may still be as in (ii) above as long as k2 > - GV2 and So 

is a root of (3.13) which is less than - 4k/3G. This restriction is necessary because 
perturbations about the curve (3.12) become singular near X = -4k13G. If the 
initial surface does not intersect (3.12), I? is more complicated and is shown in 
appendix B to consist of (B 6)  for 2 > 0, X > -4k/3G and (3.12) for Y < 0, 
X < - 4k/3G, joined by a transition region near ( - 4k/3G, 0,O). Thus, the response 

is any root Of GXi + 4kX0 + 16k2/3G + 2 V2 = 0 (3.14) 

as long as this root is greater than - 4k/3G. We note that, in this second case, 
the distance taken for the wave train to decay is longer than if k 2  > - GV2, 
since the transition region is of length of O(l2- l  d X )  - y-*. 

is as in (i) above as long as 2k2 > GV2, but if the initial 
surface does not intersect (3.10), l? is again more complicated. In  appendix C 
it is shown to consist initially of a series of loops near (3.10) and finally to be 
a regular perturbation about (3.12). These two regions are joined by a closely 
coiled spiral. The response curve is 

GXi+2kX,-  V2 = 0 (3.15) 

and is that suggested by the inviscid theory. 
The complete set of response curves is now as shown in figures 2(a) and 3. 

Without an appeal to stability theory, there is still non-uniqueness when G and 
k have opposite signs. An interesting feature of the curves for G < 0 is that the 
maximum attainable amplitude is finite and is quite independent of any damping 
mechanism. For G > 0, small non-zero viscosity does not prevent the amplitude 
becoming unbounded as k + - co, although this happens on solution branches 
which may be unstable. The effect of viscosity on these solutions is not felt at 
amplitudes of O(E-4). 

GXg + 2kX0 - V 2  = 0. 

(iv) k < 0, G > 0. 
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4. Vertical oscillations of a cylindrical tank 
In this section, we shall consider the motion of a cylindrical tank of liquid with 

vertical walls when it is subjected to vertical oscillations with amplitude eL  and 
frequency w,  where L is a typical dimension of the tank. Experiment shows that 
for some values of e and w it is possible for the fluid to remain a t  rest relative to 
the container, whereas for other values surface waves whose frequency may be 
kw or any integral multiple of w are observed (Abramson 1966). The linear stability 
theory was analysed by Benjamin & Ursell(l954) and predicts an exponentially 
growing amplitude in the unstable cases. Here we shall discuss the effects of 
nonlinearity on the stability theory and in particular consider the possibility of 
obtaining a response of O(e-l) compared with the forcing amplitude. For 
simplicity, the effects of viscosity are neglected throughout this section. 

The equations of motion of the liquid referred to a suitable dimensionless 
co-ordinate system fixed in the tank are 

0 2 q 5  = 0)  (4.1) 

q5v=0 on y = - h ,  (4.2) 

q5TL = 0 on the tank walls W(x ,  z )  = 0 (4.3) 
and, on y = €7, 

q 5 , + ( g / L w 2 + s c o s t ) ~ + ~ e / V ~ ~ 2  = 0,  (4 .4a)  

q5v = Tt  + e(#xvx + A T # ) ,  (4.4b) 

where q5n is the iiormal clerivativc of q5. The linear problem has the solution 
(Ben jamin & Ursell 1954) 

(4.5) 

where Ie,, and AS, are the eigenvalues and eigenfunctions of the problem 

sxx + s,, + k2S = 0 

d2an1/dt2 + knb tanh k t n h ( g / d L  +- e cost) aTn = 0. 

with s,, = 0 on W ( x , x )  = 0,  
and arn satisfies 

(4.6) 

The natural frequencies of the container are s1, = [gkm tanh (kvlh)/L]B and (4.6) 
is a Mathieu equation for which the zero solution is unstable in certain regions 
of the eL!22,/g, !22,/w2 plane. 

In considering the effect of nonlinearity, we suppose that only the first mode 
of the system is excited appreciably and that this is achieved when Ql/w = 4 + 8, 
where 8 < 1. Linear stability theory predicts the local stability boundary 
as 161 = eQ?L/2g with exponential growth of small disturbances when 181 is less 
than this value. This result can be predicted by use of a multiple-scale perturba- 
tion to obtain a uniformly valid large-time expansion. However, we can still 
construct a uniformly valid approximation to the full equations of motion by 
writing 

$5 “-*95,+q5,+€.3#,+..., 
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FIGURE 4. Bifurcation diagram for equation (4.9) when t ,  > 0. 
-, stable solution; - - -, unstable solution. 

where q5i = q5i(x, y, 2 ,  t ,  7 )  and 7 = ct. Then 

(4.7) 
Gosh k,(y + h)  
k, sinh k, h 

q50 = (C0(7) cos i t  + D0(7) sin i t )  fl,(x, 4, 

and has an expansion similar to (4.5). Moreover, on y = 0 

q52tt = H, cos i t  + H, sin i t  + higher harmonics in t ,  (4.8) 
where ,L-1 = 4k, tanh k, h = 4Q: L/g and 

W 

Here /3 = 48,ule and P(x, x )  = C t,S, is a known function depending on q5,. q52 is 

thus only bounded as t -+ 00 if 
m=1 

4,UdCo/dT = Do[+ +p- tl(c: + Dt)] ,  ( 4 . 9 ~ )  

4p dD0/d7 = Co[i - /3 + tl(C; + Dt)]. (4.9b) 

A phase plane analysis of (4.9) (Struble 1962, p. 251) shows that if t, > 0 
and /3 < - 4 the only solution is Co = Do = 0 and this is a centre. However, for 
1/31 < + this solution becomes a saddle point and there exist two centres at C,, = 0, 
Do = [(p+ +)/tl]&. Forb > +the zero solution is again a centre, the above centres 
persist and there are saddle points at  Co = k [ (P- i ) / t , ] i ,  Do = 0. The possible 
solution branches are illustrated for t, > 0 in the bifurcation diagram figure 4. 
If t, < 0, p is replaced by -/3 in this diagram. 

The effect of viscosity in the boundary layer on the base of the tank can be 
taken into account using the methods of $5  2 and 3. This effect first influences 
4, when Re = O(e-2). Equations (4.9) then contain extra terms which are linear 
in C,, and Do and these terms change the centres of (4.9) into stable spiral points. 
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The amplitude of the stabIe solution grows parabolically with ,B and no further 
scaling has been found with p < O(e-l) which describes the subsequent growth 
of this solution. Indeed, if this growth persists until p - O(e-l) so that 4 - O(e-l) 
when 8 - O(l ) ,  in dimensional variables an O ( L )  response is possible with an 
O(eL) excitation. Such a solution would satisfy the full nonlinear equations (4.1)- 
(4.4) without the term E C O S ~ ~  and would not be amenable to  a perturbation 
analysis. An analogous situation occurs for the model equation 

An analysis of periodic solutions of this equation leads to equations identical 
to (4.9) when 8 N O(e).  However, when 8 N O(1) the equation can be solved in 
terms of elliptic functions, and a solution of the type postulated above can be 
shown to exist. 

A similar analysis can be carried out near the other frequencies for which the 
zero solution is unstable in linearized theory by writing sl,/o = n + 6,, where n 
is an integer, and expanding apprapriately. For example, when n = I ,  we put 
$ N $o+ + e2$2 + ..., and use the two time scales t and s2t, the region of 
interest being 6, N O(a2). A bifurcation diagram can be obtained which is more 
involved than figure 4 when 8, - O(e2) but, as 6,/s2 + +a, it resolves into the 
stable solution A ,  = B, = 0 and two other branches with amplitude of O(St/e) 
of which one is stable and the other unstable. 

d2y/dt2 + (a +F) y + E(Y C O S ~  +y2) = 0. (4.10) 

The authors are grateful for the hospitality of the Courant Institute of Mathe- 
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Appendix A 
We shall not attempt an exhaustive numerical or asymptotic analysis of the 

continuous, periodic, zero-mean solutions of (2.1 1))  but merely describe the 
qualitative behaviour of some solutions with these properties. This will be done 
by means of the schematic response diagrams for the distance from crest to 
trough as a function of h in figures 5 and 6. The shape of these response diagrams 
has been determined more accurately by computation using the truncated 
Fourier series method described by Chester (1968). 

The asymptotic behaviour for large K is easiest to describe and for h - K-P < 1, 
one solution has been shown in 3 2 to match with that for h = O( l),  with a response 
curve as in figure 1.  As A increases with K~ B I hl ~ - 3 ,  the growing and decaying 
branches of figure 1 evolve into expansions of the form g - & i ~ h 4 2 8  cost and 
g - (2/hn) cost respectively. When i? = K2/h = O( l) ,  the first of these expansions 
becomes g N Ago + . . ., where go satisfies (2.1 1) without the forcing term (2 /n)  cos t 
and can be written down in terms of elliptic functions. The second expansion is 
still valid except near the points F = 3/( 1 - N2), where N is an integer greater 
than one. For N > 2, as h decreases through these points, go passes from one 
solution branch to another and is locally modified by the addition of harmonics 
with period 2n/N. However, for N = 2, the expansion itself is modified locally 
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FIGURE 5. Response curves for equation (2.11) when K 1, h- = O(1). 
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FIGURE 6. Responsc curves for equation (2.11) when K = 0.1. 
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FICUI~E 7. Surface elevations for K = 0.1 ; h = - 0.5. ---, ,u = 0; - - -, ,l6 = 0.5. 

to g - h-kg, + . . . , where go is periodic with period n-. Moreover, near any of these 
points, the magnitude of g may grow from O ( k l )  to O ( h ) ,  SO that the response 
curvc for E = O( 1 )  is as shown in figure 6. The shaded region indicates where the 
solution is in principle described by elliptic functions. 

Although equation (2.11) has many intriguing asymptotic properties, we shall 
not go into any further detail because the effect of even a small viscosity co- 
efficient p, in (2.13) rapidly prevents the high frequency branches with large 
values of 11.’ in figure 6 from attaining more than a small amplitude. 

Finally, the results of the inviscid numerical solutions when K is small and 
h = O(1) are shown in figure 6. For K = 0.1, computation wa3 only possible for 
h > - 1 because of the very high frequency oscillations which occur for smaller 
values of A. These results suggest that, while there is no continuous solution for 
K = 0 and I hl < 1.76 (see 3 2 ) ,  the effect of arbitrarily small dispersion is to produce 
a large number of highly oscillatory solutions for small K =k 0. Again, we shall 
not discuss this conjecture further here because, as has been suggested by Chester 
(1968), the most physically reasonable solution when K = 0 has a compressive 
discontinuity and this is probably also true for small non-zero K .  Indeed, the 
numerical solution for small ,u in this case not only diminishes the amplitude but 
gives an asymmetrical surface elevation with a smoothed compressive dis- 
continuity. This may be seen from the typical elevations with and without 
viscosity present shown for K = 0.1 in figure 7 .  Figure 7 may be compared with 
the experimental results of Chester & Bones (196S), whose own figure 7 is for 
comparable values of the parameters. 



Resonant surface waves 41 1 

Appendix €3 

As decreases from + co, I? begins a t  the origin and lies near (3.12) for 

X < -4k/3G. 

Integral curves which are near (3.12) for small y do not however remain so 
uniformly near the point ( - 4k/3G, 2%@/3*G, 0), where their behaviour may be 
described by putting 

Then, to first order 

z’ azpx’ = Y’ + x’2, z’ aY’/ax’ = 1. (B 4) 

We require a transition solution of these equations which matches with an 
integral curve near (3.12). An expansion of (3.12) thus gives the matching con- 
ditions as 

Z’ - -(2X’)-l as X’+-oo. (B 5 )  y’ N -X’Z, 

Now the further transformation 2‘ = dX’/du gives, apart from an arbitrary 
translation of u, 

d2X‘/du2 = u + X’2, 

so that X’(u )  is the Painlev6 transcendent (Davis 1962, p. 229). Hence the re- 
quirement that X’ - - ( - u)B as u + - oo determines X ‘  uniquely as a monotonic 
increasing function with X’ - 6 ( ~ - 3 . 4 1 ) - ~  near u = 3-41. Thus, as X’++oo, 
Z’ N 263dX‘t and the transition solution matches with an integral curve near 

2’ = - $G(X + 4k/3G)3, Y = 2Qk$/3fG. (B 6) 

Appendix C 

solution of 
It is most convenient to consider the projection of I? on Z = 0 which is the 

2 Y2 
+ 4 k + 2 G X = -  

X2 

with X = 0 and d X / d  Y finite a t  Y = 0. As in appendix B we consider X (  Y )  as .$ 
decreases from + 00. This means that Y remains negative throughout. For Y of 
O(y)  the curve (C 1) is oscillatory and basically consists of parabolic loops. In  
this region lies uniformly near Z 3  = - $GX3 - 2kX2.  For larger values of Y 
we use the method of multiple scales with a stretched slow variable (Cole 1968, 
p. 103) and define fast and slow variables by F = - y-lY and P = - y-*Y 
respectively. We also put d Y * / d F  = @( F), where @ is determined by the 
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condition that the period T of the rapidly varying part of the solution should be 
independent of the slow variable. Expanding X N X,( 7, Y*) + y#X,( P, Y") + . . . 
then gives 

where Cis as yet arbitrary except that - 4kz/G < C < 0. X ,  then satisfies a linear 
non-homogeneous differential equation, one of whose complementary functions 
is aX,/aY*. One condition for the boundedness of X, is that this complementary 
function should be orthogonal to the non-homogeneous term, which gives 

$jk2X,( aX,/a Y *)2  + 4kX, + GX$ = C( F), (C 2) 

Using (C Z), this may be rewritten as 

or 

where al,2( F) = - 2k/G T. [4k2/G2 + C( P)/G]h respectively. Finally we obtain 

- d P  1 4k2 dI y2- = - (x2---) &, 
dx 431 

where x = [4k2/G2 + C( P)/Q]i and 

C( 7)  is determined by (C 3) and, if needed, $ is given by the condition that T 
is independent of F. This solution matches with that for Y = O(y)  if C +  0 as 
P --f 0, in which case P = 0 when x = - 2k/G.  Consideration of (C 3 )  then shows 
that C -+ - 4kz/G and x -+ 0 for some finite value of P, say yo. Furthermore 
x = O( -yo) as P + F, and, by appropriately expanding the elliptic functions 
in the solution of (C Z), we can show that 

as 7+8,. Thus our transition solution matches to one term with the outer 
solution, valid for Y = O(l) ,  whose first term is (3 .12 ) .  However, the form of 
(C 4 )  suggests that matching to higher order would be a complicated matter. 
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